Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity

نویسندگان

  • Steve Tardif
  • Oladipo A. Madamidola
  • Sean G. Brown
  • Lorna Frame
  • Linda Lefièvre
  • Paul G. Wyatt
  • Christopher L.R. Barratt
  • Sarah J. Martins Da Silva
چکیده

STUDY QUESTION Can we identify compound(s) with reported phosphodiesterase inhibitor (PDEI) activity that could be added to human spermatozoa in vitro to enhance their motility without compromising other sperm functions? SUMMARY ANSWER We have identified several compounds that produce robust and effective stimulation of sperm motility and, importantly, have a positive response on patient samples. WHAT IS KNOWN ALREADY For >20 years, the use of non-selective PDEIs, such as pentoxifylline, has been known to influence the motility of human spermatozoa; however, conflicting results have been obtained. It is now clear that human sperm express several different phosphodiesterases and these are compartmentalized at different regions of the cells. By using type-specific PDEIs, differential modulation of sperm motility may be achieved without adversely affecting other functions such as the acrosome reaction (AR). STUDY DESIGN, SIZE, DURATION This was a basic medical research study examining sperm samples from normozoospermic donors and subfertile patients attending the Assisted Conception Unit (ACU), Ninewells Hospital Dundee for diagnostic semen analysis, IVF and ICSI. Phase 1 screened 43 commercially available compounds with reported PDEI activity to identify lead compounds that stimulate sperm motility. Samples were exposed (20 min) to three concentrations (1, 10 and 100 µM) of compound, and selected candidates (n = 6) progressed to Phase 2, which provided a more comprehensive assessment using a battery of in vitro sperm function tests. PARTICIPANTS/MATERIALS, SETTING, METHODS All healthy donors and subfertile patients were recruited at the Medical Research Institute, University of Dundee and ACU, Ninewells Hospital Dundee (ethical approval 08/S1402/6). In Phase 1, poor motility cells recovered from the 40% interface of the discontinuous density gradient were used as surrogates for patient samples. Pooled samples from three to four different donors were utilized in order to reduce variability and increase the number of cells available for simultaneous examination of multiple compounds. During Phase 2 testing, semen samples from 23 patients attending for either routine diagnostic andrology assessment or IVF/ICSI were prepared and exposed to selected compounds. Additionally, 48 aliquots of prepared samples, surplus to clinical use, were examined from IVF (n = 32) and ICSI (n = 16) patients to further determine the effects of selected compounds under clinical conditions of treatment. Effects of compounds on sperm motility were assessed by computer-assisted sperm analysis. A modified Kremer test using methyl cellulose was used to assess sperm functional ability to penetrate into viscous media. Sperm acrosome integrity and induction of apoptosis were assessed using the acrosomal content marker PSA-FITC and annexin V kit, respectively. MAIN RESULTS AND THE ROLE OF CHANCE In Phase 1, six compounds were found to have a strong effect on poor motility samples with a magnitude of response of ≥ 60% increase in percentage total motility. Under capacitating and non-capacitating conditions, these compounds significantly (P ≤ 0.05) increased the percentage of total and progressive motility. Furthermore, these compounds enhanced penetration into a cervical mucus substitute (P ≤ 0.05). Finally, the AR was not significantly induced and these compounds did not significantly increase the externalization of phosphatidylserine (P = 0.6, respectively). In general, the six compounds maintained the stimulation of motility over long periods of time (180 min) and their effects were still observed after their removal. In examinations of clinical samples, there was a general observation of a more significant stimulation of sperm motility in samples with lower baseline motility. In ICSI samples, compounds #26, #37 and #38 were the most effective at significantly increasing total motility (88, 81 and 79% of samples, respectively) and progressive motility (94, 93 and 81% of samples, respectively). In conclusion, using a two-phased drug discovery screening approach including the examination of clinical samples, 3/43 compounds were identified as promising candidates for further study. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study and caution must be taken when extrapolating the results. Data for patients were from one assessment and thus the robustness of responses needs to be established. The n values for ICSI samples were relatively small. WIDER IMPLICATIONS OF THE FINDINGS We have systematically screened and identified several compounds that have robust and effective stimulation (i.e. functional significance with longevity and no toxicity) of total and progressive motility under clinical conditions of treatment. These compounds could be clinical candidates with possibilities in terms of assisted reproductive technology options for current or future patients affected by asthenozoospermia or oligoasthenozoospermia. STUDY FUNDING/COMPETING INTERESTS This study was funded primarily by the MRC (DPFS) but with additional funding from the Wellcome Trust, Tenovus (Scotland), University of Dundee, NHS Tayside and Scottish Enterprise. The authors have no competing interests. A patent (#WO2013054111A1) has been published containing some of the information presented in this manuscript.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

I-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

Inhibition of the CatSper Channel and NOX5 Enzyme Activity Affects the Functions of the Progesterone-Stimulated Human Sperm

Background: Low levels of reactive oxygen species (ROS) and calcium are necessary for sperm function. NADPH oxidase 5 (NOX5) is a membrane enzyme which produces ROS. This enzyme is dependent on calcium for its activity. We investigated the importance of NOX5 and an important calcium channel (CatSper) on sperm function.Methods: This laboratory in-vitro study was done in Shiraz, Iran, 2016. Norma...

متن کامل

Cyclic nucleotide phosphodiesterase inhibition increases tyrosine phosphorylation and hyper motility in normal and pathological human spermatozoa.

Our objective was to determine the effect of phosphodiesterase (PDE) inhibition on: 1) tyrosine phosphorylation of human spermatozoa at the tail level; and 2) sperm motion parameters and hyperactivated motility. The study was conducted with normozoospermic and asthenozoospermic samples incubated under in vitro capacitating conditions. The main outcome measures were computer-assisted sperm motio...

متن کامل

Novel cilostamide analogs, phosphodiesterase 3 inhibitors, produce positive inotropic but differential lusitropic and chronotropic effects on isolated rat atria

Objective(s): Recently, we showed that some new synthetic compounds structurally related to cilostamide (4-(1,2-dihydro-2-oxoquinolin-6-hydroxy)- N-cyclohexyl-N-methylbutanamide), a selective phosphodiesterase 3 (PDE3) inhibitor, produce inotropic effect comparable to that of IBMX (3-isobutyl-1-methylxanthine), a non-selective PDE inhibitor, but with differential chronotropic effect. In this in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2014